Organizing Audio Data: A BIDS-Inspired Approach#
Organizing audio data effectively is crucial for efficient data retrieval, analysis, and sharing. Inspired by the Brain Imaging Data Structure (BIDS), a standardized format for organizing and describing neuroimaging data, we propose a similar methodology for audio data.
BIDS for Audio Data#
Just as BIDS provides a consistent way to manage neuroimaging data, we can apply similar principles to audio data. Here’s a proposed structure:
project/
dataset_description.json
participants.tsv
participants.json
sub-001/
ses-001/
audio/
sub-001_ses-001_task-description_audio.wav
sub-001_ses-001_task-description_audio.json
ses-001_scans.tsv
ses-002/
audio/
sub-001_ses-002_task-description_audio.wav
sub-001_ses-002_task-description_audio.json
ses-002_scans.tsv
sub-002/
ses-001/
audio/
sub-002_ses-001_task-description_audio.wav
sub-002_ses-001_task-description_audio.json
ses-001_scans.tsv
ses-002/
audio/
sub-002_ses-002_task-description_audio.wav
sub-002_ses-002_task-description_audio.json
ses-002_scans.tsv
In this structure:
sub-001
andsub-002
represent different subjects.ses-001
andses-002
represent different sessions.audio
directory contains the audio files and their corresponding JSON files containing metadata.task-description
is a short label of the task performed during the recording.
This structure allows for easy navigation and retrieval of specific audio files, making it highly efficient for large datasets.